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We theoretically investigate the possibility of excitonic condensation in a system of two graphene mono-
layers separated by an insulator in which electrons and holes in the layers are induced by external gates. In
contrast to the recent studies of this system, we take into account the screening of the interlayer Coulomb
interaction by the carriers in the layers, and this drastically changes the result. Due to a large number of
electron species in the system �two projections of spin, two valleys, and two layers� and to the suppression of
backscattering in graphene, the maximum possible strength of the screened Coulomb interaction appears to be
quite small, making the weak-coupling treatment applicable. We calculate the mean-field transition temperature
for a clean system and demonstrate that its highest possible value Tc

max�10−7�F�1 mK is extremely small ��F

is the Fermi energy�. In addition, any sufficiently short-range disorder with the scattering time ��� /Tc
max

would suppress the condensate completely. Our findings render experimental observation of excitonic conden-
sation in the above setup improbable even at very low temperatures.
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I. INTRODUCTION AND MAIN RESULT

The possibility of excitonic condensation �EC� in metallic
systems was originally proposed by Keldysh and Kopaev1

for semimetals with overlapping conduction and valence
bands. They have shown that the attractive Coulomb interac-
tion between electrons and holes leads to an instability to-
ward formation of bound electron-hole pairs analogous to the
Cooper instability in superconductors. Somewhat later, it was
suggested by Lozovik and Yudson2, that EC could be real-
ized in a double-layer system of spatially separated electrons
and holes. Experimental efforts toward the observation of EC
were mainly concentrated on semiconductor double quantum
well systems3–6 and experimental data speak in favor of the
existence of EC in electron-hole bilayers3–5 and electron-
electron bilayers in the quantum Hall regime.6 Some ideas on
how to create and detect the supercurrent in exciton bilayers
were expressed in Ref. 7.

Since the carrier density in graphene, including its polar-
ity, can effectively be controlled by various means,
graphene-based systems may also seem attractive for the re-
alization of EC. Indeed, several ideas on how one could ob-
tain EC in graphene have been suggested recently. One pos-
sible way to create interacting electrons and holes is to apply
a strong in-plane magnetic field to a single layer of
graphene.8 Such a magnetic field acts on the spins of the
carriers only, and the Zeeman splitting creates electrons with
one spin polarization and holes with the opposite polariza-
tion in an initially neutral sample. A detailed theory of EC in
such a setup has been developed in Ref. 8. The possibility of
EC in a single layer of undoped graphene was studied in
Refs. 9 and 10.

A double-layer graphene system �Fig. 1� as a candidate
for the observation of EC was proposed recently in Refs. 11
and 12. If two graphene layers are separated by an insulator,
electrons in one layer and holes in the other can be obtained
by applying external gate voltage. Relatively high values of
the Fermi energy �F�0.3 eV that can be achieved in

graphene by using gates13 are an obvious advantage since �F
serves as a high-energy scale of the effect in such a setup.
Solving the gap equations numerically, the authors of Refs.
11 and 12 provided an estimate TBKT�0.1�F for the critical
temperature of the Berezinski-Kosterlitz-Thouless �BKT�
transition and argued that TBKT could thus reach room tem-
peratures.

However, in the analysis of Refs. 11 and 12, the screening
of the Coulomb interactions by the carriers in the graphene
layers was not taken into account. In this Rapid Communi-
cation, we demonstrate that taking screening into account is
essential as it drastically reduces the transition temperature
compared to the estimate obtained in Refs. 11 and 12 ne-
glecting screening. In fact, screening sets the upper bound
for the interaction strength, yielding for the maximum pos-
sible value of the dimensionless coupling constant

�max =
1

N
=

1

8
. �1�

Here N=NsNvNl=23=8 is the total number of electron spe-
cies in the system originating from two projections of spin
�Ns=2�, two valleys �Nv=2�, and two layers �Nl=2�. More-
over, the chiral nature of quasiparticles in graphene leads to

FIG. 1. �Color online� Excitonic condensate in a system of two
spatially separated graphene layers. Electrons and holes in the lay-
ers are induced by applying the external gate voltage.
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the suppression of backscattering. Consequently, the maxi-
mum interaction strength �c

max that determines the transition
temperature appears to be actually two times smaller than
�max,

�c
max =

�max

2
=

1

16
. �2�

As follows from Eqs. �1� and �2�, the large number of
electron species and suppression of backscattering make the
maximum possible value �c

max of the interaction strength nu-
merically quite small. This justifies the applicability of the
weak-coupling BCS approach to the problem since 1/16 can
safely be considered as a small parameter. As a result, for the
highest possible value of the mean-field transition tempera-
ture we obtain

Tc
max � exp�− 1/�c

max��F = exp�− 16��F � 10−7�F. �3�

This is the highest possible value of the critical temperature
of the excitonic condensation that could be achieved in a
perfectly clean double-layer graphene system. Entering Eq.
�3� as the exponent, the large value of the inverse interaction
strength 1 /�c

max=16 results in a drastic reduction in the tran-
sition temperature. In order to achieve the maximum value
�Eq. �3��, the interlayer distance d must be much smaller than
the Debye screening length �−1,

�d � 1. �4�

The most optimistic estimate would thus be Tc
max�1 mK for

�F�0.3 eV, which would require d�0.5 nm.

II. CALCULATIONS

We now present the details of derivation of Eq. �3�. The
bare strength of Coulomb interactions in graphene is not that
small. For SiO2 used as an insulator embedding graphene
sheets, typical values of the dimensionless coupling constant
are rs=e2 / �	v��1 �	 is the dielectric constant of the insula-
tor, and v is the velocity of the Dirac spectrum; we set �
=1 throughout this section�. This questions the applicability
of the weak-coupling approach to the problem of EC, sug-
gesting, at the same time, that the transition temperature
could be quite high.11,12

It is known, however, that in a fermionic system with a
large number N
1 of independent fermionic species the in-
teractions are significantly weakened. Physically, large N
makes screening very effective since all N species participate
in the screening of interactions between fermions of each
particular species. Screening reduces the coupling constant
from rs to the value 1 /N�1:rs→1 /N. Effectively, the sys-
tem becomes weakly interacting despite the fact that the bare
Coulomb interactions may be not weak �rs�1�.

The large-N approximation was already used for a single-
layer graphene8,14,15 before. In a single layer, the number of
species is equal to N1=NsNv=4 due to two projections of
spin �Ns=2� and two valleys �Nv=2�. This value is not ex-
ceptionally large, but does give hope that the large-N ap-
proach adequately describes graphene physics. In a double-
layer system the situation is better: since each electron can

belong to either one of the layers, one has an additional
“which-layer” degree of freedom �Nl=2�, which makes the
total number of species N=NsNvNl=8. It would already be
quite reasonable to treat N=8 as a large parameter. There-
fore, large-N approximation seems to be particularly suitable
for a double-layer graphene system and is expected to pro-
vide good quantitative predictions.

Below we employ the large-N approach to the double-
layer graphene system �Fig. 1� treating N=8 as a large pa-
rameter and calculate the mean-field critical temperature Tc
of EC. The calculations follow closely those of Ref. 8. Of
course, the mean-field treatment of two-dimensional systems
is not necessarily a good one due to strong thermal fluctua-
tions. It is, however, sufficient for our purposes as our main
goal is to demonstrate that already the mean-field critical
temperature is extremely low. The temperature TBKT of the
actual BKT transition can only be lower than the mean-field
Tc we calculate here.

Within the large-N approximation, the diagrammatic se-
ries for the effective interaction between the electrons is
identical to that of the random-phase approximation �RPA�,
which describes linear screening. We emphasize that this
form of the interaction is controlled not by RPA, which im-
plies small excitation energies and momenta compared to the
Fermi scale, but by the large number N
1. For the problem
at hand, the relevant transfer momenta q are in the range of
0�q�2pF, where pF=�F /v is the Fermi momentum. In this
range the static polarization operator in graphene10,16 does
not depend on momentum at all and equals 
��=0,q�
=NsNv�, where �=�F / �2�v2� is the density of states per one
valley and one spin. As a result, for the screened interlayer
Coulomb interaction in the momentum space we obtain

V�q� =
2�e�

2 exp�− qd�
q + 2� + �2�1 − exp�− 2qd��/q

, q � 2pF. �5�

In Eq. �5�, q is the absolute value of the in-plane two-
dimensional wave vector, d is the distance between the lay-
ers, e� is the effective electron charge screened by the insu-
lator embedding graphene sheets, e�

2=e2 /	, and �
=2�NsNve�

2� is the inverse Debye screening length in each
layer. We assume the same Fermi momenta pF of electrons
and holes �this can be achieved by tuning the gate voltage�
since any difference between them would be suppressing the
condensate in a way Zeeman splitting suppresses s-wave su-
perconductivity.

Screened Coulomb interaction �5� is a decreasing function
of q �Fig. 2� and reaches its maximum at q=0,

V�q = 0� =
2�e�

2

2� + 2�2d
. �6�

The maximum of Eq. �6� is achieved if the distance d be-
tween the layers is smaller than the Debye radius �Eq. �4��
and equals

Vmax�q = 0� =
1

2NsNv�
. �7�

The factor 2 that enters the denominator in Eq. �7� is due to
which-layer degree of freedom �Nl=2� since each carrier can
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belong to either one of the layers. Equation �7� leads to Eq.
�1� for the maximum value of the dimensionless coupling
constant �max=�Vmax�q=0�.

In contrast to the above calculation, in the analysis of
Refs. 11 and 12 the unscreened form

Vus�q� = 2�e�
2 exp�− qd�/q �8�

of the Coulomb interaction V�q� �Eq. �5�� was used �see Eq.
�4� in Ref. 11 and inline formulas before Eq. �2� in Ref. 12�.
As seen from Eqs. �5� and �8� and Fig. 2, the unscreened
form Vus�q� is valid for q
2�=NrspF but significantly over-
estimates the actual screened interaction V�q� for relevant
momenta q�2pF. For the value rs=1 used in Ref. 11 and
typical for SiO2 as an insulator, one obtains Vus�pF�
�9V�pF�. Using the unscreened form of the Coulomb inter-
action in Refs. 11 and 12 resulted in the estimate TBKT
�0.1�F and, as it appears, led an overestimation of TBKT by
a factor of 106; see Eq. �3�.

In order to obtain the mean-field transition temperature
Tc, we derive the linearized gap equation for the order pa-

rameter �̂�r−r��=V�r−r����̂e�r��̂h
†�r���, where V�r−r�� is

interaction �5� in the coordinate space and �̂e,h are the Dirac
spinor fields of electrons and holes in the graphene sheets.
The matrix structure of the order parameter in the sublattice
space is predetermined by chirality but can be arbitrary in the
valley and spin spaces. Using the standard BCS approach,
we arrive at the linearized gap equation

�̂�n� = � ln
�F

T
	 dn�

2�
V�pF
n − n�
�P̂�n���̂�n��P̂�− n�� ,

�9�

where the two-dimensional unit vectors n and n� represent

the direction of the electron momentum and P̂�n�= �1
+�n� /2, where �x and �y are the Pauli matrices in the sub-

lattice space. The value of temperature T at which a nonzero

solution �̂�n� to Eq. �9� appears determines Tc. Solving Eq.
�9�, we obtain

Tc � exp�− 1/�c��F, �10�

where

�c = �	
−�

� d�

2�
V�2pF sin

�

2
�1 + cos �

2
. �11�

The exact numerical value �1 of the prefactor in Eq. �10�
cannot be obtained within the logarithmic accuracy of the
mean-field approach. The form of Eqs. �10� and �11� and the

matrix structure of the solution �̂�n� in the sublattice space
are identical to those in Ref. 8 �see Eqs. �5.23�–�5.31�
therein�. At the same time, form �5� of the interaction V�q� is
different here.

The maximum possible value �c
max �Eq. �2�� of the inter-

action constant �c �Eq. �11�� and, thus, the highest possible
transition temperature Tc

max, �Eq. �3�� are obtained by insert-
ing Eq. �7� into Eq. �11�. This corresponds to the limit pF
�2��1 /d �Eq. �4��, where the condition pF�2� is auto-
matically satisfied since rs�1 and 2� / pF=rsN
1. The fac-
tor �1+cos �� /2 entering Eq. �11� is a consequence of chiral-
ity. It suppresses backscattering and reduces �c

max by a factor
of 2 compared to �max �Eq. �1��; see Eq. �2�.

The obtained small value of �c
max=1 /16 justifies the very

applicability of the weak-coupling BCS approach to deter-
mining Tc, within which the logarithm ln��F /T��16 has to
be large. Therefore, the critical temperature Tc does exponen-
tially depend on the inverse coupling constant 1 /�c, which
leads to its extremely small value �Eq. �3��.

III. DISCUSSION AND CONCLUSION

Let us now discuss the obtained results. Remarkably
enough, as Eqs. �1�–�3� demonstrate, the specifics of the
graphene spectrum �chirality and valley degrees of freedom�
appear to be very unfavorable for the realization of EC in
graphene-based devices. At the same time, this is not so for
double-layer systems based on materials with “conventional”
metallic spectrum, such as, e.g., GaAs /AlxGa1−xAs hetero-
structures used so far experimentally.3–6 Indeed, in such sys-
tems the maximum interaction strength �c

max=1 / �NsNl�
=1 /4 is four times larger than in graphene �Eq. �2�� due to
the absence of the valley space and chirality. This value is
not that small, and the system could be on the verge of the
weak-coupling limit. Therefore, one does not get such a
small value of the transition temperature as we obtained for
graphene.

It is also instructive to mention for comparison that in a
single-layer graphene subject to the in-plane magnetic field8

one obtains �c
max=1 / �2NsNv�=1 /8 for the interaction con-

stant since the system consists of only one layer �Nl=1� �see
Eq. �5.29b� in Ref. 8� and the exponential factor
exp�−�c

max�=exp�−8��3�10−4 in Eq. �3� is not as small.
However, the Zeeman splitting energy enters Eq. �3� instead
of �F, which cannot be extremely high even for experimen-

FIG. 2. �Color online� The screened V�q� �Eq. �5�, solid line�
and unscreened Vus�q� �Eq. �8�, dashed line� interlayer Coulomb
interaction responsible for the excitonic instability. The values d
=0 and rs=e2 / �	v�=1 were used; � is the density of states. At
relevant momenta q� pF, the unscreened interaction potential over-
estimates the actual screened one by about ten times. The screened
Coulomb interaction reaches its maximum at q=0; the universal
value �Eq. �1�� of which is achieved for �d�1 �Eq. �4��.
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tally very high magnetic fields B. For B�40 T one can es-
timate that Tc

max�20 mK.
There is another factor that is unfavorable for the realiza-

tion of EC in double-layer systems. Namely, the excitonic
condensate is sensitive to the impurity scattering.2,17 Since
the bound electron and hole carry the same momentum p,
any scattering process that changes the momentum of elec-
tron and hole not identically, i.e., p→pe for electron and p
→ph for hole, so that pe�ph breaks the electron-hole pair
�see Fig. 3�. This is the case for any impurities with the range
of the scattering potential less than the interlayer distance d
since the potential of such impurities differs in the two lay-
ers. The effect of the impurity scattering on the excitonic
condensate was studied analytically for conventional systems
in Refs. 2 and 17 and the theory is analogous to Abrikosov-
Gorkov’s theory for magnetic impurities in superconductors.
This approach has been very recently applied to graphene in
Ref. 18. The main result of this study is that sufficiently
short-range impurities with the scattering time � destroy the
excitonic condensate completely as soon as

�/� � Tc, �12�

where Tc is the transition temperature of the ideally clean
system. Since the mean-free path v��1 �m of the order of
the typical size of graphene samples corresponds to � /�
�1 K, considering the values Tc

max�1 mK obtained, the
condensate should be completely suppressed at any tempera-
ture T�Tc

max even in the ballistic samples due to the bound-
ary scattering.

In conclusion, we have studied the possibility of the ex-
citonic condensation in double-layer graphene systems. We
have demonstrated that in order to properly determine the
transition temperature, it is essential to take the screening of
the coupling interlayer Coulomb interaction into account.
The specifics of the graphene spectrum �chirality and valley
degrees of freedom� lead to a smaller interaction strength
than in conventional semiconductors and to an extremely
small value �1 mK of the transition temperature. This
makes graphene-based systems disadvantageous for the ob-
servation of the excitonic condensation.

After the present work was completed, we became aware
of Ref. 19 in which Eqs. �10� and �11� were obtained. How-
ever, contrary to our main argument that these equations are
valid and provide good quantitative prediction also for mod-
erate to strong Coulomb interactions �rs�1�, it was stated in
Ref. 19 that they should apply in the weak-coupling limit
�rs�1 or pFd
1� only, whereas for rs�1, analogously to
Refs. 11 and 12, one could expect high Tc of the order of
room temperatures.
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FIG. 3. �Color online� Sensitivity of the excitonic condensate to
the impurity scattering. Impurities with the size of potential smaller
than the interlayer distance scatter electrons and holes not identi-
cally, thereby breaking electron-hole pairs and suppressing the
condensate.
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